Fundamentals, Optimization and Practical Aspects of (U)HPLC

Definitions and basic concepts of <u>Ultra High Performance Liquid Chromatography</u>

R

2004: HPLC evolved to UHPLC

Two key ingredients for this evolution:

- Introduction of new, ultra-high pressure stable, sub-2-µm diameter particles in 2004 followed by the introduction of superficially porous, low diameter particles in 2006
- Next generation HPLC instrumentation capable to deliver solvents at ultra-high pressure and able to conserve the ultra high efficiency separation of columns packed with these new particles

Key ingredients of UHPLC:

- New Column Technologies:
 - Totally porous (TP) sub-2-micrometer particles
 - Superficially porous (SP) particles
 - (Monolithic columns)
- Next generation HPLC instrumentation:
 - Delivering mobile phases at ultra high pressure (now up to 1500 bar)
 - Systems optimized to conserve peak fidelity before, during and after separation
- Does this mean that UHPLC differs from HPLC?

Basic theory of HPLC applies as well to UHPLC

Mind this nomenclature!

Considerations Before Optimizing an (U)HPLC Separation

- Should Comprise all Operations of an HPLC Analysis
 - Sample Preparation
 - Sample Handling and Injection
 - Chromatographic Separation
 - Detection
 - Quantitation, Data Evaluation and Information Management
- Should Meet User Requirements
 - Robustness; towards slight change in conditions
 - Reliability, stability and longevity
 - Reproducibility and accuracy
 - Affordable
 - Ease of use; match skill of the operators
- Must Meet Internal and External Compliance and Regulatory Requirements (OQPV, Validation, ISO, GLP, etc.)

Overall cycle time R

0

The Chromatography Optimization "Trilemma"

Resolution

Quoted from Prof. Georges Guiochon*

"the primary objective of an analysis by HPLC separation is to identify a maximum number of analytes (**resolution**) in the minimum amount of time (**t**₀) and to derive an accurate quantitative estimate of their concentrations (**sensitivity**).

*F. Gritti and G. Guiochon, J. Chromatography A, 1228 (2012) 2–19; Prof. Guiochon passed away, October 21, 2014

Presented on 11/10/2014

The Chromatography Optimization "Trilemma"

Obtain the best possible resolution in the shortest possible time

Presented on 11/10/2014

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

Presented on 11/10/2014

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

R

0

Ζ

Improve Resolution by Selectivity

- "Know your molecules"!!
- Is difficult to predict
 - Experience helps (ask your colleague, check the literature! (<u>http://scholar.google.com</u>, <u>http://academic.research.microsoft.com/</u>)
 - Establish retention model for all molecules one is interested in
- Use of optimization software for the separation of multi-component mixtures (ChromSword, DryLab)
 - May become a laborious procedure especially with multicomponent samples
 - Impossible to do with very complex samples >50 components (e.g. tryptic digests, biomedical or environmental samples)

R

0

Ζ

С

0

 $R_{s} = \frac{\sqrt{N_{2}}}{4} \cdot \left[\frac{\alpha - 1}{\alpha}\right] \cdot \left[\frac{k_{2}}{k_{2} + 1}\right]$

$R_{s} = \frac{\sqrt{N_{2}}}{4} \cdot \left[\frac{\alpha}{4}\right]$	$\frac{-1}{\alpha} \left[\frac{k_2}{k_2 + 1} \right]$	
$N - \underline{L}$	Action	Constraint
H	Increase length of the column	Longer analysis time Higher column pressure
	Decrease H(ETP) by	Higher column pressure

using smaller particles

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

t

n

g

HETP and Pressure Drop vs. Solvent Velocity

R

0

Ζ

UHPLC - Essentials

van Deemter Plot reordered*

L (50 mm) and d_p fixed, select optimal u_o

How to achieve a particular plate number $N_{required}$ (N_r), say 20,000 plates, in the shortest time possible at a given maximal column pressure available?

According to J.H. Knox and M. Saleem, J. Chromatogr. Sci., 7 (1969), p. 614 R

How to Obtain the Required Plate Number in the Shortest Time?

200 bar			
N _r	t ₀	d _p	L
1000	0.2 s	0.5 μm	1.1 mm
10000	20 s	1.7 μm	35 mm
100000	2000 s	5 μm	1100 mm
1000000	2.3 days	17 μm	35 m
400 bar			
1000	0.1 s	0.39 μm	0.78 mm
10000	10 s	1.22 μm	24.4 mm
100000	1000 s	3.87 μm	774 mm
1000000	1.16 days	12.25 μm	24.5 m
1000 bar			
1000	0.04 s	0.25 μm	0.5 mm
10000	4 s	0.77 μm	15.5 mm
100000	400 s	2.45 μm	490 mm
1000000	0.46 days	7.75 μm	15.5 m

Unretained retention, *optimal particle size* and column length at pressure limited situations in HPLC R

n

g

In Order to Get Separation.....

- Keep in mind that selectivity works best in obtaining resolution for samples with few compounds, but may require a laborious optimization procedure.
- The objective in (U)HPLC is to obtain the best resolution in the shortest possible time.
- Very high efficiencies (N > 50,000) require bigger particles and longer columns at the cost of time
- <u>Medium efficiencies</u> (N < 50,000) satisfying in 99% of all cases, are obtained <u>in short time</u> with <u>very small particles</u> and <u>short column</u> <u>lengths</u> at the <u>cost of pressure</u>

"Kinetic Performance Limit" Plot Approach

Originally proposed by Giddings*

*J.C. Giddings, Anal. Chem. 37, 60 (1965)

11/10/2014

Equations required:

*J.C. Giddings, Anal. Chem. 37, 60 (1965)

**G. Desmet et al., LCGC Europe, 18 (7), 403-409 (2005) and G. Desmet et al., J. Chrom. A, 1228, 20 (2012);

11/10/2014

"Kinetic Performance Limit" Plot Approach*

Example:

Maximum pressure 400 bar Column Zorbax 3.5µm 10cm

	Experimental data					
F (ml/min)	⊿P (bar)	<i>u_o</i> (mm/s)	<i>Η</i> (μm)			
3,5	228,1	6,95	8,72			
3	196,5	5,97	8,40			
2,5	164,6	4,98	7,92			
2	132,8	4,00	7,51			
1,75	117,0	3,51	7,31			
1,5	101,2	3,01	7,26			
1,25	85,2	2,52	7,21			
1	69,1	2,02	7,46			
0,875	61,1	1,77	7,75			
0,75	53,0	1,51	8,15			
0,625	45,0	1,26	8,86			
0,5	36,7	1,01	10,02			
0,375	28,4	0,76	11,93			
0,25	19,6	0,51	16,15			
0,125	10,4	0,25	29,21			

Kinetic Plot Theory "Kinetic Performance Limit" Plot Approach

Experimental data

Experimental data					
F (ml/min)	⊿P (bar)	<i>u_o</i> (mm/s)	<i>Η</i> (μm)	t _o (min)	N
3,5	228,1	6,95	8,72	0,240	11466
3	196,5	5,97	8,40	0,279	11911
2,5	164,6	4,98	7,92	0,335	12633
2	132,8	4,00	7,51	0,417	13323
1,75	117,0	3,51	7,31	0,475	13675
1,5	101,2	3,01	7,26	0,553	13779
1,25	85,2	2,52	7,21	0,662	13860
1	69,1	2,02	7,46	0,826	13408
0,875	61,1	1,77	7,75		
0,75	53,0	1,51	8,15		
0,625	45,0	1,26	8,86	10.0	
0,5	36,7	1,01	10,02	20,0	
0,375	28,4	0,76	11,93		
0,25	19,6	0,51	16,15		
0.125	10.4	0.25	29.21		

Zorbax 100x4.6 mm, 3.5 μm

R

(U)HPLC Tutorial - All rights ROZING.COM Consulting

"Kinetic Performance Limit" Plot Approach*

Extrapolate the experimental data N, t_0 (or H, u_0) obtained by measuring a "van Deemter" plot, to the kinetic performance limit (KPL) obtained at ΔP_{max}

Elongation factor:
$$\lambda = \frac{\Delta P_{\text{max}}}{\Delta P_{\text{exp}}}$$

 $N_{KPL} = \lambda \cdot N_{exp}$ $t_{0,KPL} = \lambda \cdot t_{0,exp}$ $L_{KPL} = \lambda \cdot L_{exp}$ $t_{R,KPL} = \lambda \cdot t_{R,exp}$

* K. Broeckhoven, et al., J. Chromatogr. A, 1217 (2010) 2787-2795.

Kinetic Plot Theory "Kinetic Performance Limit" Plot Approach

 ΔP_{max} = 400 bar

Experimental data				Kinetic plot data					
F (ml/min)	ΔP (bar)	$u_0 (\text{mm/s})$	H (µm)	t_0 (min)	N (/)	λ(/)	t_0 KPL (min)	N KPL (min)	t_R KPL (min)
3,5	228,1	6,95	8,72	0,240	11466	1,75	0,420	20109	2,98
3	196,5	5,97	8,40	0,279	11911	2,04	0,568	24247	4,03
2,5	164,6	4,98	7,92	0,335	12633	2,43	0,814	30699	5,78
2	132,8	4,00	7,51	0,417	13323	3,01	1,256	40118	8,92
1,75	117,0	3,51	7,31	0,475	13675	3,42	1,625	46745	11,54
1,5	101,2	3,01	7,26	0,553	13779	3,95	2,187	54464	15,53
1,25	85,2	2,52	7,21	0,662	13860	4,69	3,108	65047	22,07
1	69,1	2,02	7,46	0,826	13408	5,79	4,786	77654	33,98
0,875	61,1	1,77	7,75	0,944	12902	6,55	6,182	84490	43,89
0,75	53,0	1,51	8,15	1,101	12268	7,54	8,309	92560	59,00
0,625	45,0	1,26	8,86	1,319	11293	8,89	11,727	100382	83,26
0,5	36,7	1,01	10,02	1,647	9983	10,89	17,946	108754	127,42
0,375	28,4	0,76	11,93	2,192	8382	14,11	30,928	118265	219,59
0,25	19,6	0,51	16,15	3,284	6191	20,46	67,199	126663	477,11
0,125	10,4	0,25	29,21	6,553	3423	38,40	251,635	131456	1786,61

Elongation factor $\boldsymbol{\lambda}$

Data courtesy of Profs. Gert Desmet & Ken Broeckhoven, Free University Brussels

"Kinetic Performance Limit" Plot Approach

Μ С 0 n S U t n g

R

0

Ζ

Ν

G

С

0

Data courtesy of Profs. Gert Desmet & Ken Broeckhoven, Free University Brussels

"Kinetic Performance Limit" Plot Approach

Data courtesy of Profs. Gert Desmet & Ken Broeckhoven, Free University Brussels

11/10/2014

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

"Kinetic Performance Limit" Plot Approach

R

Temperature increase

- Decrease in the mobile phase viscosity*
 - Viscosity is reduced 1 to 2 % per ^QC increase
 - Lower back pressure
- Increase of solute diffusivity
 - Lower HETP-value
- Decrease in the mobile phase polarity
 - Increasing temperature 4 to 5 °C is comparable to increasing the methanol or acetonitrile concentration by 1% in a reversed phase system
 - Less organic solvent in the eluent (in RP separations)

$$D_{m,T} = D_{m,298} \frac{\eta_{298}}{\eta_T} \frac{T}{298}$$

R

0

Ζ

Ν

*J. Billen et al., J. Chrom. A, 1210, 30 (2008)

Role of Temperature in (U)HPLC

Experimental Result*

R

0

Ζ

Ν

G

*Results courtesy of Dr. Davy Guillarme, Univ. Geneva

11/11/2014

Role of Temperature in UHPLC

Selectivity changes

Column: ZORBAX SB-C18 4.6 x 50 mm, 1.8 μm Solvent: A: Water + 0.1% formic acid B: Acetonitrile + 0.1% formic acid (85:15), Flowrate: 1 mL/min

Data and slide courtesy of Dr. Udo Huber, Agilent Technologies, Germany

Silica-based Column Technology for UHPLC

Particle Morphology	Characteristic Size	Requirements, Applications
Totally Porous (TP) Particles	2.5 – 10 μm 8 – 30 nm pores	Standard materials since many years; standard equipment, routine HPLC

U

t

n

g

R

Column Technologies for UHPLC

Photos courtesy of Dr. Bill Barber, Agilent Technologies

R

Superficially Porous Particles

Superficially Porous Particles were introduced already in the 60ties by Cs. Horvath and modernized by J.J. Kirkland et al in the late 90ties (Poroshell 300) and in 2005 (Halo series)

The particle has 2.7 μ m outer diameter with a solid core (1.7 μ m) and porous outer layer with a 0.5 μ m diffusion path. The average pore diameter is 120 Å. The core has 25% of the particle volume. 75% of the particle volume is porous. (<u>Poroshell 120</u>)

Figure and photo courtesy of Dr. Bill Barber, Agilent Technologies

R

0

Ζ

Ν

G

С

0

Μ

The porous volume fraction φ of a superficially porous particle is given by

$$\varphi_{PV} = 1 - \left(\frac{d_{core}}{d_p}\right)^3 \cong 0.75$$

The internal porosity $\epsilon_{\rm i}$ of a superficially porous particle is assumed to be

$$\varepsilon_i = \varepsilon_{i, fully \ porous} \cdot \varphi_{V porous}$$

Slide courtesy of Dr. Monika Dittmann, Agilent Technologies, Germany

Knox Plot TP and SP Particle Columns

Data and slide courtesy of Dr. Monika Dittmann, Agilent Technologies, Germany

R

0

Ζ

Summary Column Technology

- Superficially porous particles are an excellent compromise between efficiency of totally porous particles < 2 μm and permeability of larger particles (3 μm).
- The stationary phase volume of a SP particle is about 25% less than a totally porous particle
- The main reasons for the better efficiency of SP particle columns compared with TP particle columns are:
 - Lower contribution to HETP by Eddy dispersion (A-term)
 - B-term contribution is less since there is less volume in the particle
- Silica based monoliths have large thru pores and therefore behave like larger particles. They are more suited for very long columns for high plate number or fast separations with low plate number

Plate number scales linearly with length and inversely with particle size

$N \sim \frac{L}{d_p}$		better resolution , same resolution , lower resolution	
Column length (mm)	N, 5 μm	N, 3.5 μm	N, 1.8 μm
150	13050	18650	→ 36250
100	8700	12400	24150
50	4350	6200	12100

Flow rate scales quadratic with the column diameter

$$F_2 = \frac{{d_{c2}}^2}{{d_{c1}}^2} \cdot F_1 = \frac{2.1^2}{4.6^2} \cdot 1\text{mL/min} = 0.21\text{mL/min}$$

Data and slide courtesy of Dr. Udo Huber, Agilent Technologies, Germany

Ronald E. Majors, LCGC North America, Volume 29, Issue 6, pp. 476-485

R

0

Ζ

Slide courtesy of Prof. P. Carr & Dr. D. Stoll

11/11/2014

Method Translation

HPLC → UHPLC Gradient Separations; definition of delay volume

Delay volume or dwell volume defined as the "volume from the point of mobile phase mixing to the column head"

- > Delays the arrival of the gradient at the head of the column
- Extends the time by which the solutes on the column are under isocratic separation conditions.

J.W. Dolan LCGC 2006 Vol 24, No 5, 458-466)

Method Translation

HPLC → UHPLC Gradient Separations; Influence of delay volume

0 Ζ Ν G С 0 Μ С 0 n S u n g

R

Method Translation Literature and Software

- <u>http://www.chem.agilent.com/Library/technicaloverviews/Public/5990-9213EN.pdf</u>
 - Agilent Technologies LC Calculator App for iPhone (isocratic only)
- <u>http://www.americanpharmaceuticalreview.com/Featured-Articles/36760-Direct-Method-Scaling-from-UHPLC-to-HPLC-Is-this-feasible-for-Pharmaceutical-Methods/</u>
- Intelligent System Emulation Technology (ISET) Agilent Technologies for Method Transfer
 - Emulates other HPLC systems (both Agilent and competitors) on Agilent 1290 system
 - Run existing HPLC methods on Agilent 1290 Infinity without modifying your method or system

Effect of High Pressure on Solvent and Column Properties in UHPLC*

- Solvent density (ρ) resp. specific volume, viscosity (η), compressibility (χ) and melting point change
- Retention factors (k') and chemical equilibriums
- Solute diffusion coefficient (D_m)
- Total porosity of the packed bed (ε_T)
- Column dimensions length and diameter (L and d_c)
- Frictional heating causes temperature gradients (longitudinal: ΔT_L and radial: ΔT_R)

R

0

Ζ

Ν

*M. Martin & G. Guiochon, J. Chrom. A, 1090, 16 , (2005)

- Friction Heating
 - Axial Temperature Gradient
 - Radial Temperature Gradient
- Role of column thermostat method

Power (P) generated in an HPLC column by frictional heat

$$P = \Delta P \cdot F$$

$$W = J / s = \frac{Nm}{s} = \frac{N}{m^2} \frac{m^3}{s}$$

Equivalent with electrical power *P=V.1* !!!

Power (P) generated in an HPLC column by frictional heat

$P = \varDelta P \cdot F$

E.g. Column: 150 mm x 4.6 mm, $d_p = 3 \mu m$ F = 1 mL/min (mobile phase velocity = 1.4 mm/s, optimal flow rate) Water ($\eta = 1.10^{-3}$ Pa s) $K_s = 0.89 \times 10^{-14} m^2$ $\Delta P = 169 \text{ bar} = 1.69 \times 10^7 \text{ Pa}$

Power = 280 mW

Frictional heat is released via column effluent

R

0

Ζ

Ν

G

Visualisation of solvent velocity

Adiabatic wall = insulated, no heat exchange with environment

Isothermal case = well thermostatted, fast heat exchange with environment

Simulation courtesy of Desmet et al, Free University of Brussels, Department of Chemical Engineering

Magnitude of ΔT_L at high inlet pressures*

7 (°C)	<i>F</i> <i>(</i> mL/min)	⊿ <i>P</i> bar	P mW	<i>∆T_L</i> (calculated)	<i>∆T_L</i> (measured)
25	0.8	670	893	19.3 °C	10 °C
25	1.0	819	1360	23.6 °C	13 °C
40	1.0	749	1250	21.6 °C	13 °C
40	1.1	822	1510	23.7 °C	16 °C

Column: 50 x 2.1 mm; BEH C18; 1.7 µm; ACN/Water – 30/70

Calculated values differ from measured values:

- 1) Heat loss by radiation
- 2) Backflow of heat over column from outlet to inlet

Longitudinal temperature gradient will not be a problem in practical operation provided that the radial temperature distribution is homogenous!

*Sandra et al., J. Chrom. A, 1113, 84 (2006)

November 11, Dalian, China

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

"Still air" Case*

R

0

Ζ

Ν

G

*P.Sandra et al., J. Chrom. A, 1113, 84 (2006)

Isothermal Case*

"Still air" Case vs Isothermal Case*

Marginal influence of ΔT_L on peak shape and plate number Major influence of ΔT_R !

*P.Sandra et al., J. Chrom. A, 1113, 84 (2006)

November 11, Dalian, China

All parts of the system between the point of sample introduction and the point of injection contribute to dispersion.

*Slide courtesy of Dr. Monika Dittman, Agilent Technologies

Effect of External Band-Broadening on N

R

*Slide courtesy of Dr. Monika Dittman, Agilent Technologies

November 11, Dalian, China

*Slide courtesy of Dr. Monika Dittman, Agilent Technologies

November 11, Dalian, China

Impact of Bad Connection on a 1 mm Column

*Slide courtesy of Dr. Monika Dittman, Agilent Technologies

R

0

Ζ

- Monika Dittmann, Karsten Kraiczek and other co-workers at Agilent Technologies in Waldbronn, Germany
- Gert Desmet et al., Free University of Brussels, Department of Chemical Engineering

R

Thank You for Your Attention 谢谢

R

0

Ζ

Ν

G

С

0

Μ

С

0

n

S

U

n

g

 \bullet \bullet \bullet

Reprints will be available soon via

http://www.rozing.com

(registration required)