About Dr. Gerard Rozing

1964-1976:

Undergraduate and graduate studies at University of Amsterdam, Netherlands. Majors in Organic Chemistry and Chemical Engineering, Ph.D. Synthetic Organic Chemistry.

1977-1979:

Post-doctoral research University of Ghent, Belgium and University of Amsterdam.

1979-1999:

Hewlett-Packard, Waldbronn, Germany. R&D Chemist, group & project Leader, R&D manager, HPLC column, HPLC system, CE capillaries and CE system development.

2000:

Agilent Technologies University Relations and External Scientific Collaborations Manager, Agilent Research Fellow.

Retired September 1, 2012:

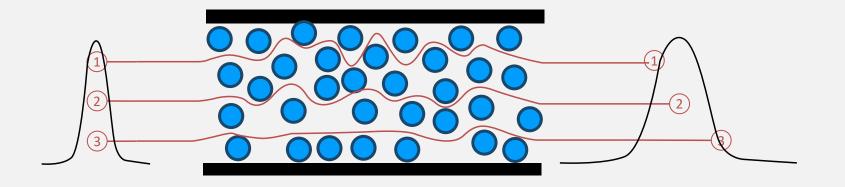
Since then, working as a freelance consultant.

Current:

Member of the Strategy Advisory Boards of <u>PharmaFluidics</u>, Ghent, Belgium and <u>Advanced Electrophoresis</u> <u>Solutions</u>, Cambridge, ON, Canada. Involved as co-organizer HPLC, MSB and ISC symposium series

Contact:

E-Mail, gerard@rozing.com. Phone, +49 721 47639816. Visit my website at http://www.rozing.com.


Recent Developments in Liquid Phase Separations

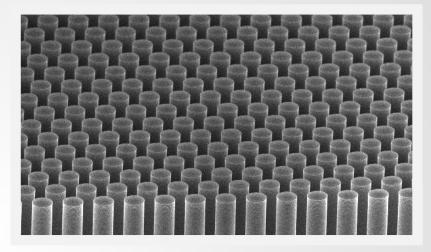
Presented by Dr. Gerard P. Rozing @ KIST Europe, August 27, 2019 µPillar Array Columns (µPAC); a paradigm change in technology for ultra High Resolution micro- and nano-HPLC for bioanalysis

Collaboration with PharmaFluidics, Ghent, Belgium

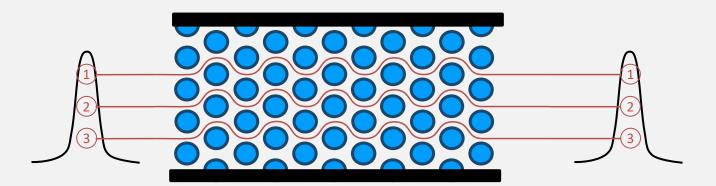
Performance Limit of Packed HPLC Columns

Zone broadening by unequal pathlengths and velocities of solutes traversing the column bed: "eddy diffusion"

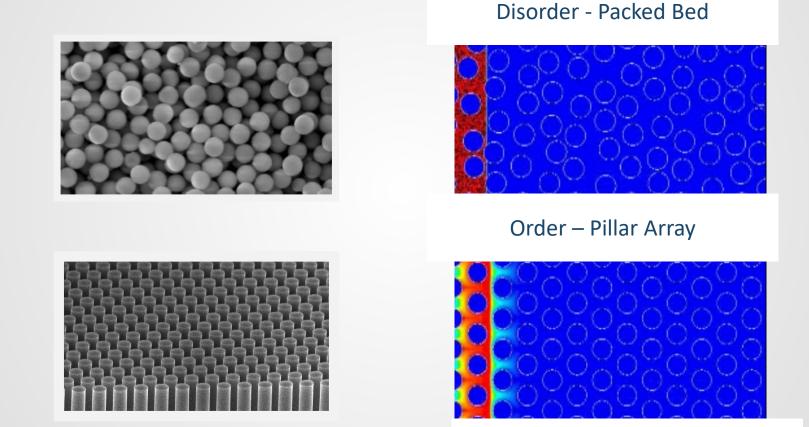
Are caused by inhomogeneous axial and radial density of the packing*


- Disturbance by the wall
- Particle size distribution
- Unequal solvent flow velocity during packing
- Bridge formation during packing → bed instability

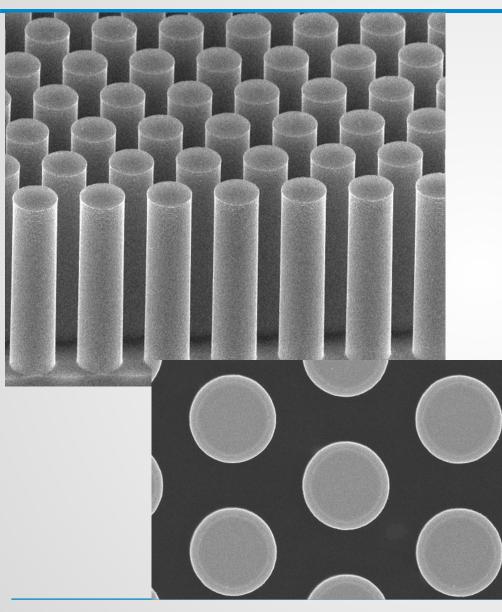
*LC-GC Magazine NORTH AMERICA VOLUME 36 NUMBER 2 FEBRUARY 2018 , Page 82.


COLUMN WATCH: Understanding the Science Behind Packing High-Efficiency Columns and Capillaries: Facts, Fundamentals, Challenges, and Future Directions Fabrice Gritti and M. Farooq Wahab

μPillar Array Columns (μPAC)



Highly ordered "particles"


G. Desmet et al.. Anal. Chem., 2007, 79, 5915-5926 and many publications since then

Unprecedented Separation Performance

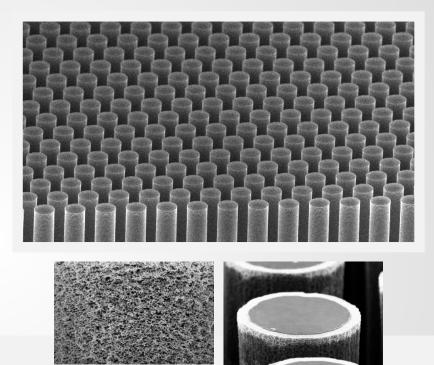
The benefit of Order versus Disorder

µPillar Array Columns – Some Metrics

Pillars :

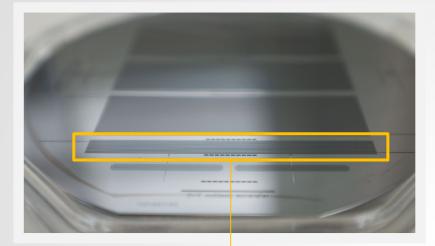
- Interpillar distance 2.5 μm
- Diameter $\approx 5 \ \mu m$
- Height $\approx 20 \ \mu m$
- Porous layer 0.3 μm deactivated silica
- Surface bonded with C18

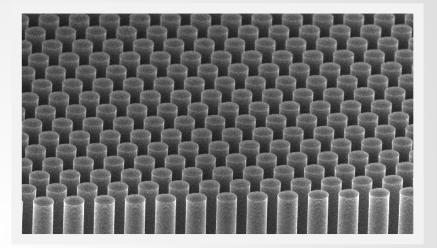
Chips :

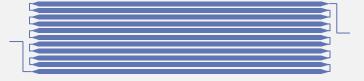

- Channel width 315 μm
- Channel length \approx 5cm
- Total length 50, 100, 200 cm
- Total volume (2 m) 7 μL
- Inter pillar porosity ≈ 0.6
- Phase ratio ≈ 0.04
- Max pressure 250 bar

Chromatography :

- Reversed Phase C18
- Permeability $\approx 4x10^{-13} \text{ m}^2$ (50-100x lower common particle packed bed column)
- Reduced Plate Height 1
- Typical flow rate 0.2 1 μ L/min
- Injection volume up to 1 μL


µPAC Paradigm Changing HPLC Column Technology

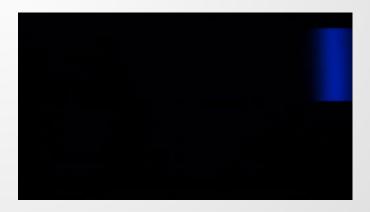



- Silicon wafer
- Photolithographic production process warrants reproducibility
- Etching free-standing pillars
- Surface oxidation makes a silica layer
- Glass bonding

µPAC Paradigm Changing HPLC Column Technology

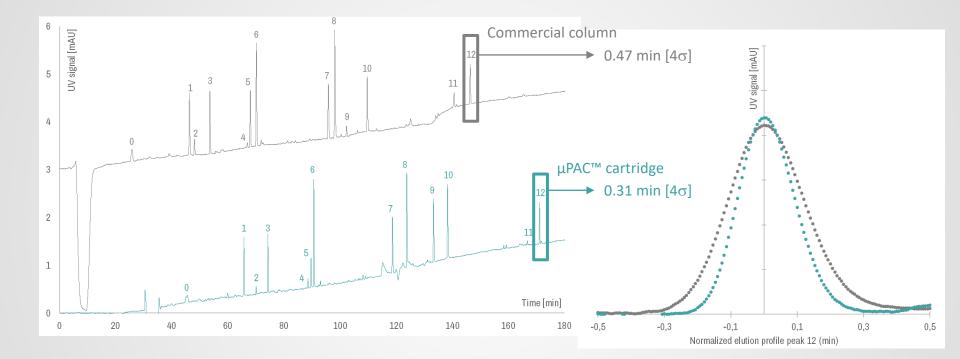
50 cm μPAC[™] column design

- $\circ~$ 10 lanes of 5 cm long and 315 μm wide
- Concatenated into a 50 cm long separation bed


µPAC Paradigm Changing HPLC Column Technology

REAL TIME injection

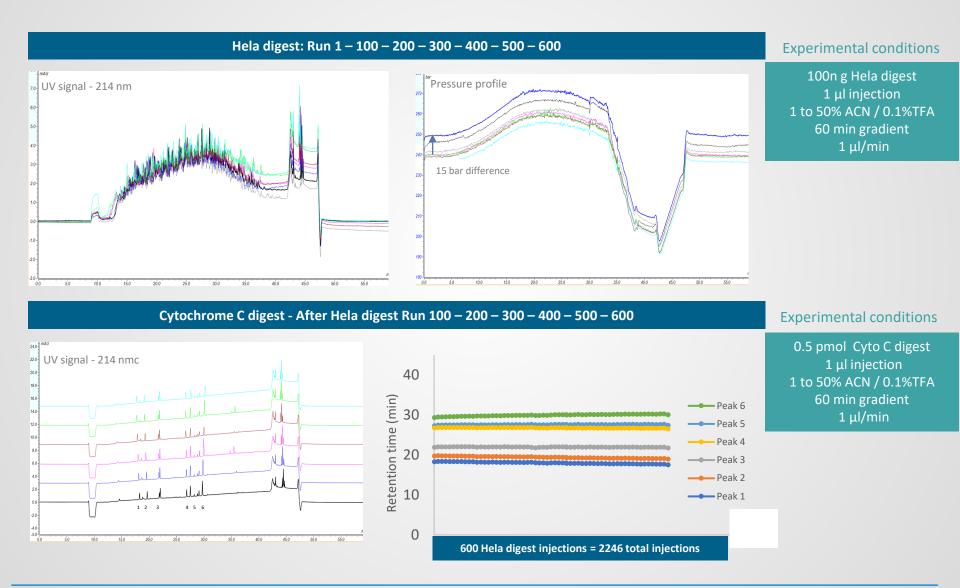
Flow distribution


Unprecedented separation bed length on a small footprint, without additional peak dispersion

TURN structure

µPAC[™] - C18 – 200 cm - Separation Performance

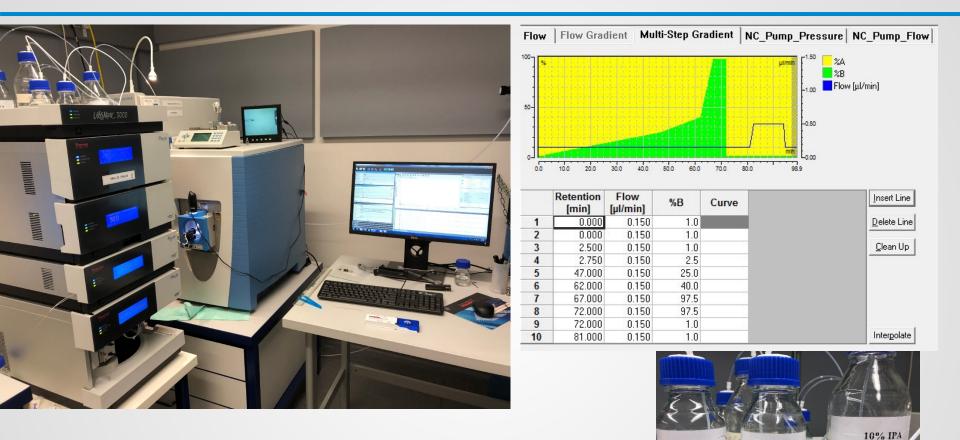
µPAC[™] cartridge vs packed bed commercial nano-LC column



Experimental conditions

0.5 pmol Cytochrome C digest – 1 μl injection 2 to 40% ACN / 0.1%TFA 180 min gradient / 300 nl/min

LC system: Thermo Scientific Ultimate 3000 nanoRSLC **Detection:** UV detection at 214 nm (3 nl flow cell volume)

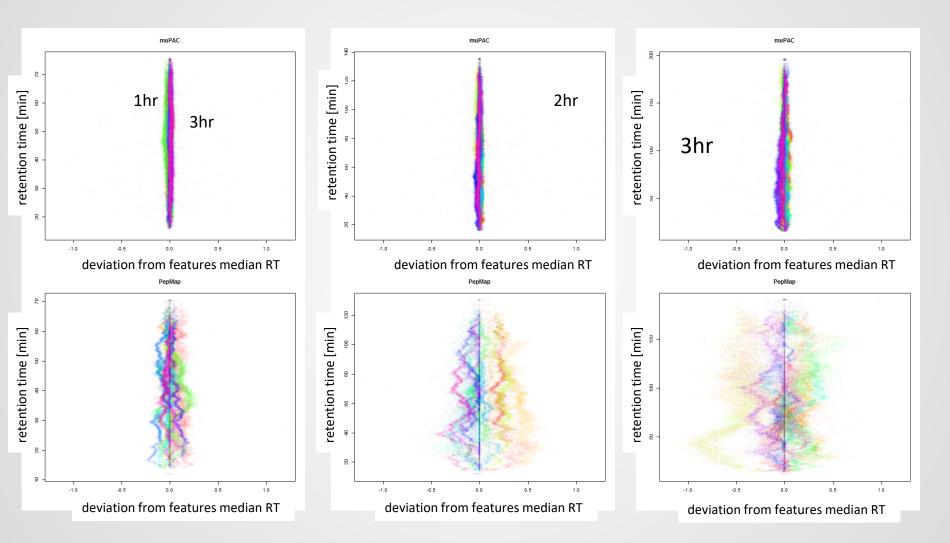

µPAC[™] Stability

8/30/2019

All rights PharmaFluidics, Ghent Belgium

Comparison µPAC and PepMap*

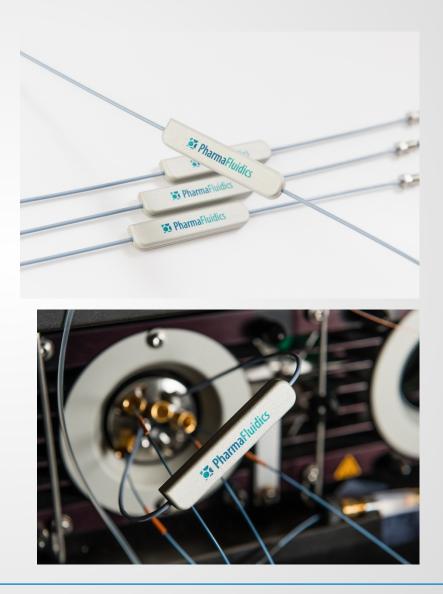
PepMap, 50 cm x 75 μ m, 2 μ m, C18 μ PAC, 50 cm, C18 All conditions the same for both columns


*Courtesy of Dr. Karl Mechtler, Institute of Molecular Biotechnology, Vienna

80% ACN

0.08% F

0.1% FA


Retention Time Reproducibility

Every color represents a different run; from left to right, gradient time 1, 2, 3, hrs. Top µPAC, bottom PepMap column

New µPAC[™] trapping column

- Instant pressurization due to separation bed of perfectly ordered, free-standing pillars
- Perfectly symmetrical and fritless column design, allowing bedirectional use
- Compatible with both switching valve (regular and backflush elution) or vented trapping configuration

µPAC[™] Product Portfolio

	200 cm µPAC™ nano	50 cm μPAC™ nano	µPAC™ CapLC
Pillar shape	Cylindrical	Cylindrical	Cylindrical
Pillar diameter [µm]	5	5	5
Interpillar distance [µm]	2,5	2,5	2,5
Channel width [µm]	315	315	1000
Channel depth [µm]	18	18	28
Column length [cm]	200	50	50
Column volume [µl]	9	3	10
Surface morphology	Core shell	Core shell	Core shell
Porous layer thickness [µm]	300	300	300
Pore size range [A]	100 - 300	100 - 300	100 - 300
Surface functionalization	C18 + HMDS	C18 + HMDS	C18 + HMDS
Typical flow rate	0.15 – 1 μL/min	0.15 – 1 μL/min	??

Essential Advantages of µPAC Columns

- Ultimate separation performance
- High permeability allows long column length
- Best in class column to column reproducibility
- No frits to terminate particle bed
- Rigid pillars
- Allows bidirectional operation
- Superior longevity and robustness

Summary µPAC

- μPAC is a paradigm in liquid phase separation technology, approaching the ultimate performance of HPLC as predicted by the grounding fathers of HPLC, Knox, Guiochon, and Giddings
- Regard µPAC as Open Tubular Liquid Chromatography in practice
- The first generation μPAC (2.5 μm interpillar distance) has proven feasibility for the separation of a high number of solutes, in the micro- and nanoflow HPLC realm.
- Seamless coupling with all vendor MS systems is key for PharmaFluidics. Adapter kits available.
- Next generation µPACs with shorter interpillar distance will outperform conventional HPLC and eventually UHPLC columns and can be regarded "green" and "smart" separation technology

US Contact: SciPartners, John Lindsay, Boston, MA Tel: +1 (774) 273 1256