Coupling imaged Capillary Iso-Electric Focusing with Mass Spectrometry (iCIEF-MS)

Christian Neusüß\textsuperscript{a},
Tiemin Huang\textsuperscript{b}, Martin Donker\textsuperscript{c}, Gerard Rozing\textsuperscript{d}

\textsuperscript{a} Aalen University of Applied Science, Aalen, Germany,
\textsuperscript{b} Advanced Electrophoresis Solutions, Cambridge, ON, Canada
\textsuperscript{c} Isogen Lifescience, de Meern, Netherlands
\textsuperscript{d} ROZING.COM Consulting, Karlsruhe, Germany
Iso-Electric Focusing Applications

→ Versatile, essential separation method for the analysis of proteins

→ In proteomics for:
  - Determination of the pI of an unknown peptide or protein
  - Assessment of charge heterogeneity, purity or presence of isoforms of proteins
  - Determination of PTMs (de-amidation, oxidation) of recombinant proteins, mABs and antibody drug conjugates (ADC)

→ In manufacturing of recombinant proteins for:
  - Product purity and identity
  - Product stability

→ In clinical analysis for:
  - Analysis of serum proteins
  - Determination of hemoglobin variants
  - Glycosylation of transferrin

→ In food analysis for:
  - Identify and characterize allergenic proteins

© Aalen University, ROZING.COM Consulting, Advanced Electrophoresis Solutions and Isogen Lifescience
Iso-Electric Focusing

→ Planar Format
  - Slab gel
  - Immobilized pH gradient (IPG, Righetti et al.)
  - IEF strips for 2D GE
→ Capillary Format

IEF → separation in
At the beginning of a CIEF run, the whole capillary (PFE coated fused silica) is filled with a mixture containing:

- Carrier Ampholytes (CA, polyamino-polycarboxylic acid oligomers with pI’s ranging from 3-10 and MW 500-800)*
- Protein or peptide sample to be analyzed (amphoteric molecules)
- pI markers (amphoteric molecules)
- All molecules will be homogeneously distributed over the whole capillary at start. pH of the solution average of all pKa’s and pKb’s; molecules with a low pI will have a positive charge, molecules with high pI have a negative charge at start
- The inlet side low pH (anolyte, H₃PO₄), high positive voltage, anode
- The outlet side high pH (catholyte, NaOH), grounded, cathode
- Apply voltage/field

CIEF, Focusing in Front of the Point of Detection!

Sacrificing ampholytes are needed to keep the focused zones within the capillary and before PoD!!!
Focused protein zones need be moved over the PoD to become quantified!!

Graphics courtesy of Agilent Technologies
Advantages:
- Uses existing commercial CE instruments
- Delivers quantitative data/electronic records

Challenges:
- Keep protein zones in front of the PoD during focusing (Sacrificing ampholytes)
- Minimize resolution loss during mobilization

Drawbacks:
- Two step process → long analysis time (0.5-1 hour/run)
- Method development long and complicated
Commercialized by Convergent Bioscience in 2000, iCE280.
Convergent acquired by Cell Biosciences (now Protein Simple) in 2010.
New market iCIEF introduction by Advanced Electrophoresis Solutions in 2016
Separation of Hemoglobin Isoforms

- AESlyte pH 3-10
- Protein Simple Hemoglobin Standard
- Marker 3.4, 9.5, Focus. Time 3’
- Separation Capillary 50x0.1 mm
Challenges in Coupling iCIEF with ESI-MS*

- Transport separated, nanoliter size zones to the ESI interface
  - Chemical mobilization
  - Extra syringe for pressure mobilization maintaining focusing voltage
- Interference/ion suppression of the ESI process by ampholytes
  - Localized separation - proteins and CA have different pI and are in different positions
- Non-volatile neutral additives (methyl cellulose) will cause contamination of the MS inlet
  - Polyacrylamide coated separation capillary does not require to add MC
- Deal with two high voltage sources on one liquid conductor
  - CE-MS IF from Bruker and Agilent MS have sprayer needle at ground
- Focused zone has up to 50x higher protein concentration
  - Keep protein in solution
  - Avoid dispersion during transport → much lower i.d. transfer capillary

*Dai et al., Anal. Chem. 2018, 90, 2246–2254*
Approaches for iCIEF-MS Coupling

✓ Coupling with sampling valve – Heart-cutting approach
  ➢ Neusüß et al.

✓ Direct coupling with ESI using sheath solvent
  ➢ Huang et al.
iCIEF-MS with Nanoliter Samping Valve*

*C. Montealegre & C. Neusüß, Electrophoresis 2018, 39, 1151–1154
1st D: iCIEF, CEInfinite

- Easy hydraulic coupling of CEInfinite with nanoliter valve, and Bruker MS
- In this configuration CE and ES voltages are decoupled
  ➔ no dedicated CE-MS interface required, μHPLC or nanoHPLC ESI interface suffices
**iCIEF-flow injection-MS – Hemoglobin**

**Focusing**: 1000 V (1 min), 2000 V (1 min), 3000 V (6 min), 15 s interval time
Sample: 2% ASFC Hb, 2% AESlyte 6-9, 70% MC 0.5 %
Separation capillary 50x0.2 mm

**Mobilization**: 0.120 µL/min + 3000 V (25 min), 15 s interval time
Sample: 2% ASFC Hb, 2% AESlyte 6-9, 70% MC 0.5 %
iCIEF of Peptide Mix with Direct Coupling

Sample: 5% Angiotensin I and Leucine-enkephalin 9 (50 μg/mL), 2% AESlyte (pH 4-8), 70% methylcellulose (0.5 %). Focusing: 1kV (1 min), 2kV (1 min), 3kV (6 min), interval time 15 s. Mobilization: flow 0.120 μL/min, 3kV 11 (25 min), 15 s interval time
iCIEF of mAB coupled to CE-MS

a) Flow injection mode for the main variant M (1.25 mg/mL).
b) Example of image after focusing for the mAb in 1% AESlyte pH 16 3-10, 2% AESlyte pH 8 -10.5 HR, and 70% methylcellulose 0.5%
c) With CE-MS coupling for the main variant M (1.25 mg/mL)
d) the main acidic variant A (2.0 mg/mL) and
e) the main basic variant B (6.0 19 mg/mL)
CIEF-MS Direct Coupling

Waters: NanoLockSpray-Exact-Mass-Ionization-Source

- Concentration of mAbs should be between 0.5 – 3 mg/mL
- Add sheath liquid through T-piece
- Composition: 2% formic acid in 50% methanol aqueous solution
- Sheath liquid flow rate: 0.4 – 4 μL/min
- ESI voltage: 2.85 – 3.25 KV
- Fragmentation voltage: 40 – 180 V

Thermo Fisher: Nanospray Flex™ Ion Sources
Conclusions:

✓ iCIEF-MS coupling is feasible
✓ AES CEInfinite with Prep option is an open platform solution for iCIEF-MS coupling

- Voltages for CE-separation and ES-ionization can be decoupled allowing simply use an LC-MS nano- or µLC-sprayer
- Use CZE as second dimension more MS friendly (background elimination) and improves peak shape
- Direct coupling through ESI-IF using sheath solvent under development
Acknowledgements

✓ Group of Prof. Christian Neusüß esp. Dr. Cristina Montealegre

✓ My co-authors, Martin Donker of Isogen Lifescience for strong support and Dr. Tiemin Huang of AES Ltd